Role of endogenously secreted angiotensin II in the CO2-induced stimulation of HCO3 reabsorption by renal proximal tubules.

نویسندگان

  • Yuehan Zhou
  • Walter F Boron
چکیده

Previous studies demonstrated that the proximal tubule (PT) responds to isolated increases in basolateral ([CO(2)](BL)) or "bath" CO(2) concentration by increasing the HCO(3)(-) reabsorption rate (J(HCO(3))). Blockade of the rabbit apical AT(1) receptor or knockout of the mouse AT(1A) receptor eliminates these effects, demonstrating a requirement for luminal ANG II that the PT itself synthesizes. In the present study, we examined the effects of the ACE inhibitor lisinopril on J(HCO(3)) in isolated perfused rabbit PTs (S2 segment), using out-of-equilibrium solutions to make isolated changes in [CO(2)](BL) at a fixed baseline HCO(3)(-) concentration of 22 mM and fixed baseline pH of 7.4. Adding 60 or 240 nM lisinopril (in vitro K(i): 0.5 or 1.2 nM) to the lumen had no effect. These results are not consistent with the hypothesis that the PT secretes either angiotensinogen or ANG I. However, adding 60 nM basolateral lisinopril significantly decreased J(HCO(3)) at a [CO(2)](BL) of 20%. Moreover, 240 nM basolateral lisinopril decreased baseline (i.e., at 5% CO(2)) J(HCO(3)) by one-half and completely eliminated the response to altering [CO(2)](BL) from 0 to 20%, but left intact the stimulatory effect of 10(-11) M basolateral ANG II. At extremely high concentrations (i.e., 100 microM), luminal lisinopril replicated the effects of 240 nM basolateral lisinopril. Our data are consistent with the hypothesis that lisinopril readily crosses the basolateral (but not apical) membrane to block ACE in a vesicular compartment. We conclude that the isolated PT predominantly secretes preformed ANG II, rather than angiotensinogen or ANG I.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous angiotensin II modulates rat proximal tubule transport with acute changes in extracellular volume.

In the present study, we examined whether the effect of endogenously produced angiotensin II on proximal tubule transport in the male Sprague-Dawley rat is regulated by acute changes in extracellular volume. We measured the magnitude of endogenous angiotensin II-mediated stimulation of transport by sequentially perfusing proximal tubules in vivo, first with an ultrafiltrate-like solution, then ...

متن کامل

Effect of isolated removal of either basolateral HCO-3 or basolateral CO2 on HCO-3 reabsorption by rabbit S2 proximal tubule.

The equilibrium CO2+H2O right arrow over left arrow H++HCO3- had made it impossible to determine how isolated changes in basolateral CO2 ([CO2]) or HCO3- concentration ([HCO3-]), at a fixed basolateral pH, modulate renal HCO3- or reabsorption. In the present study, we have begun to address this issue by measuring HCO3- reabsorption (JHCO3) and intracellular pH (pHi) in isolated perfused rabbit ...

متن کامل

Renal nerve stimulation augments effect of intraluminal angiotensin II on proximal tubule transport.

The proximal tubule synthesizes and secretes angiotensin II into the lumen, where it regulates transport. Renal denervation abolishes the effect of angiotensin II on proximal tubule transport. Using in vivo microperfusion, we examined whether renal nerve stimulation modulates the effect of angiotensin II on transport. The effect of angiotensin II was assessed by measuring the decrease in volume...

متن کامل

Delivery dependence of early proximal bicarbonate reabsorption in the rat in respiratory acidosis and alkalosis.

In the intact rat kidney, bicarbonate reabsorption in the early proximal tubule (EP) is strongly dependent on delivery. Independent of delivery, metabolic acidosis stimulates EP bicarbonate reabsorption. In this study, we investigated whether systemic pH changes induced by acute or chronic respiratory acid-base disorders also affect EP HCO3- reabsorption, independent of delivery (FLHCO3, filter...

متن کامل

Regulation of glomerulotubular balance. III. Implication of cytosolic calcium in flow-dependent proximal tubule transport.

In the proximal tubule, axial flow (drag on brush-border microvilli) stimulates Na(+) and HCO3 (-) reabsorption by modulating both Na/H exchanger 3 (NHE3) and H-ATPase activity, a process critical to glomerulotubular balance. We have also demonstrated that blocking the angiotensin II receptor decreases baseline transport, but preserves the flow effect; dopamine leaves baseline fluxes intact, bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 294 1  شماره 

صفحات  -

تاریخ انتشار 2008